Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664387

RESUMO

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Córtex Sensório-Motor , Humanos , Adolescente , Feminino , Masculino , Adulto Jovem , Criança , Córtex Sensório-Motor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Pré-Escolar , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Vias Neurais/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Córtex Cerebral/crescimento & desenvolvimento
2.
Artigo em Inglês | MEDLINE | ID: mdl-38679324

RESUMO

BACKGROUND: Patients with major depressive disorder (MDD) can present with altered brain structure and deficits in cognitive function similar to aging. Yet, the interaction between age-related brain changes and brain development in MDD remains understudied. In a cohort of adolescents and adults with and without MDD, we assessed brain aging differences and associations through a newly developed tool quantifying normative neurodevelopmental trajectories. METHODS: 304 MDD participants and 236 non-depressed controls were recruited and scanned from three studies under the Canadian Biomarker Integration Network for Depression. Volumetric data were used to generate brain centile scores, which were examined for: a) differences in MDD relative to controls; b) differences in individuals with versus without severe childhood maltreatment; and c) correlations with depressive symptom severity, neurocognitive assessment domains, or escitalopram treatment response. RESULTS: Brain centiles were significantly lower in the MDD group compared to controls. It was also significantly correlated with working memory in controls, but not the MDD group. No significant associations were observed in depression severity or antidepressant treatment response with brain centiles. Likewise, childhood maltreatment history did not significantly affect brain centiles. CONCLUSIONS: Consistent with prior work on machine learning models that predict "brain age", brain centile scores differed in people diagnosed with MDD, and MDD was associated with differential relationships between centile scores and working memory. The results support the notion of atypical development and aging in MDD, with implications on neurocognitive deficits associated with aging-related cognitive function.

3.
Elife ; 122024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324465

RESUMO

The cerebral cortex underlies many of our unique strengths and vulnerabilities, but efforts to understand human cortical organization are challenged by reliance on incompatible measurement methods at different spatial scales. Macroscale features such as cortical folding and functional activation are accessed through spatially dense neuroimaging maps, whereas microscale cellular and molecular features are typically measured with sparse postmortem sampling. Here, we integrate these distinct windows on brain organization by building upon existing postmortem data to impute, validate, and analyze a library of spatially dense neuroimaging-like maps of human cortical gene expression. These maps allow spatially unbiased discovery of cortical zones with extreme transcriptional profiles or unusually rapid transcriptional change which index distinct microstructure and predict neuroimaging measures of cortical folding and functional activation. Modules of spatially coexpressed genes define a family of canonical expression maps that integrate diverse spatial scales and temporal epochs of human brain organization - ranging from protein-protein interactions to large-scale systems for cognitive processing. These module maps also parse neuropsychiatric risk genes into subsets which tag distinct cyto-laminar features and differentially predict the location of altered cortical anatomy and gene expression in patients. Taken together, the methods, resources, and findings described here advance our understanding of human cortical organization and offer flexible bridges to connect scientific fields operating at different spatial scales of human brain research.


Assuntos
Encéfalo , Córtex Cerebral , Humanos , Córtex Cerebral/fisiologia , Encéfalo/metabolismo , Neuroimagem/métodos , Processos Mentais , Biologia , Mapeamento Encefálico/métodos
4.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398345

RESUMO

Brain-wide association studies (BWAS) are a fundamental tool in discovering brain-behavior associations. Several recent studies showed that thousands of study participants are required to improve the replicability of BWAS because actual effect sizes are much smaller than those reported in smaller studies. Here, we perform analyses and meta-analyses of a robust effect size index (RESI) using 63 longitudinal and cross-sectional magnetic resonance imaging studies from the Lifespan Brain Chart Consortium (77,695 total scans) to demonstrate that optimizing study design is critical for improving standardized effect sizes and replicability in BWAS. A meta-analysis of brain volume associations with age indicates that BWAS with larger covariate variance have larger effect size estimates and that the longitudinal studies we examined have systematically larger standardized effect sizes than cross-sectional studies. We propose a cross-sectional RESI to adjust for the systematic difference in effect sizes between cross-sectional and longitudinal studies that allows investigators to quantify the benefit of conducting their study longitudinally. Analyzing age effects on global and regional brain measures from the United Kingdom Biobank and the Alzheimer's Disease Neuroimaging Initiative, we show that modifying longitudinal study design through sampling schemes to increase between-subject variability and adding a single additional longitudinal measurement per subject can improve effect sizes. However, evaluating these longitudinal sampling schemes on cognitive, psychopathology, and demographic associations with structural and functional brain outcome measures in the Adolescent Brain and Cognitive Development dataset shows that commonly used longitudinal models can, counterintuitively, reduce effect sizes. We demonstrate that the benefit of conducting longitudinal studies depends on the strengths of the between- and within-subject associations of the brain and non-brain measures. Explicitly modeling between- and within-subject effects avoids conflating the effects and allows optimizing effect sizes for them separately. These findings underscore the importance of considering study design features to improve the replicability of BWAS.

5.
medRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106166

RESUMO

Background: Autism and attention deficit hyperactivity disorder (ADHD) are heterogeneous neurodevelopmental conditions with complex underlying neurobiology. Despite overlapping presentation and sex-biased prevalence, autism and ADHD are rarely studied together, and sex differences are often overlooked. Normative modelling provides a unified framework for studying age-specific and sex-specific divergences in neurodivergent brain development. Methods: Here we use normative modelling and a large, multi-site neuroimaging dataset to characterise cortical anatomy associated with autism and ADHD, benchmarked against models of typical brain development based on a sample of over 75,000 individuals. We also examined sex and age differences, relationship with autistic traits, and explored the co-occurrence of autism and ADHD (autism+ADHD). Results: We observed robust neuroanatomical signatures of both autism and ADHD. Overall, autistic individuals showed greater cortical thickness and volume localised to the superior temporal cortex, whereas individuals with ADHD showed more global effects of cortical thickness increases but lower cortical volume and surface area across much of the cortex. The autism+ADHD group displayed a unique pattern of widespread increases in cortical thickness, and certain decreases in surface area. We also found evidence that sex modulates the neuroanatomy of autism but not ADHD, and an age-by-diagnosis interaction for ADHD only. Conclusions: These results indicate distinct cortical differences in autism and ADHD that are differentially impacted by age, sex, and potentially unique patterns related to their co-occurrence.

6.
Nat Commun ; 14(1): 8411, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110396

RESUMO

Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain's functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development℠ Study. Across matched discovery (n = 3525) and replication (n = 3447) samples, the total cortical representation of fronto-parietal PFNs positively correlates with general cognition. Cross-validated ridge regressions trained on PFN topography predict cognition in unseen data across domains, with prediction accuracy increasing along the cortex's sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.


Assuntos
Individualidade , Imageamento por Ressonância Magnética , Humanos , Adolescente , Imageamento por Ressonância Magnética/métodos , Encéfalo , Cognição , Testes Neuropsicológicos , Mapeamento Encefálico
7.
Cell Rep ; 42(12): 113487, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995188

RESUMO

During adolescence, the brain undergoes extensive changes in white matter structure that support cognition. Data-driven approaches applied to cortical surface properties have led the field to understand brain development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. Although white matter development also appears asynchronous, previous studies have relied largely on anatomical tract-based atlases, precluding a direct assessment of how white matter structure is spatially and temporally coordinated. Harnessing advances in diffusion modeling and machine learning, we identified 14 data-driven patterns of covarying white matter structure in a large sample of youth. Fiber covariance networks aligned with known major tracts, while also capturing distinct patterns of spatial covariance across distributed white matter locations. Most networks showed age-related increases in fiber network properties, which were also related to developmental changes in executive function. This study delineates data-driven patterns of white matter development that support cognition.


Assuntos
Substância Branca , Humanos , Adolescente , Função Executiva , Encéfalo , Cognição
8.
Cell Rep ; 42(11): 113439, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37963017

RESUMO

Human brain size changes dynamically through early development, peaks in adolescence, and varies up to 2-fold among adults. However, the molecular genetic underpinnings of interindividual variation in brain size remain unknown. Here, we leveraged postmortem brain RNA sequencing and measurements of brain weight (BW) in 2,531 individuals across three independent datasets to identify 928 genome-wide significant associations with BW. Genes associated with higher or lower BW showed distinct neurodevelopmental trajectories and spatial patterns that mapped onto functional and cellular axes of brain organization. Expression of BW genes was predictive of interspecies differences in brain size, and bioinformatic annotation revealed enrichment for neurogenesis and cell-cell communication. Genome-wide, transcriptome-wide, and phenome-wide association analyses linked BW gene sets to neuroimaging measurements of brain size and brain-related clinical traits. Cumulatively, these results represent a major step toward delineating the molecular pathways underlying human brain size variation in health and disease.


Assuntos
Encéfalo , Transcriptoma , Adulto , Humanos , Tamanho do Órgão , Encéfalo/metabolismo , Fenótipo , Estudo de Associação Genômica Ampla/métodos , Biologia Molecular , Predisposição Genética para Doença
9.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014137

RESUMO

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about the spatial structure of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genomics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose Network Enrichment Significance Testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study phenotype associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.

10.
EClinicalMedicine ; 65: 102276, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954904

RESUMO

Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that poses a worldwide public health challenge. A neuroimaging biomarker would significantly improve early diagnosis and intervention, ultimately enhancing the quality of life for affected individuals and reducing the burden on healthcare systems. Methods: Cross-sectional and longitudinal data (10,099 participants with 13,380 scans) from 12 independent datasets were used in the present study (this study was performed between September 1, 2021 and February 15, 2023). The Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN) score was developed via integrated regional- and network-based measures under an ensemble machine learning model based on structural MRI data. We systematically assessed whether IBRAIN could be a neuroimaging biomarker for AD. Findings: IBRAIN accurately differentiated individuals with AD from NCs (AUC = 0.92) and other neurodegenerative diseases, including Frontotemporal dementia (FTD), Parkinson's disease (PD), Vascular dementia (VaD) and Amyotrophic Lateral Sclerosis (ALS) (AUC = 0.92). IBRAIN was significantly correlated to clinical measures and gene expression, enriched in immune process and protein metabolism. The IBRAIN score exhibited a significant ability to reveal the distinct progression of prodromal AD (i.e., Mild cognitive impairment, MCI) (Hazard Ratio (HR) = 6.52 [95% CI: 4.42∼9.62], p < 1 × 10-16), which offers similar powerful performance with Cerebrospinal Fluid (CSF) Aß (HR = 3.78 [95% CI: 2.63∼5.43], p = 2.13 × 10-14) and CSF Tau (HR = 3.77 [95% CI: 2.64∼5.39], p = 9.53 × 10-15) based on the COX and Log-rank test. Notably, the IBRAIN shows comparable sensitivity (beta = -0.70, p < 1 × 10-16) in capturing longitudinal changes in individuals with conversion to AD than CSF Aß (beta = -0.26, p = 4.40 × 10-9) and CSF Tau (beta = 0.12, p = 1.02 × 10-5). Interpretation: Our findings suggested that IBRAIN is a biologically relevant, specific, and sensitive neuroimaging biomarker that can serve as a clinical measure to uncover prodromal AD progression. It has strong potential for application in future clinical practice and treatment trials. Funding: Science and Technology Innovation 2030 Major Projects, the National Natural Science Foundation of China, Beijing Natural Science Funds, the Fundamental Research Funds for the CentralUniversity, and the Startup Funds for Talents at Beijing Normal University.

11.
Radiology ; 309(1): e230096, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37906015

RESUMO

Background Clinically acquired brain MRI scans represent a valuable but underused resource for investigating neurodevelopment due to their technical heterogeneity and lack of appropriate controls. These barriers have curtailed retrospective studies of clinical brain MRI scans compared with more costly prospectively acquired research-quality brain MRI scans. Purpose To provide a benchmark for neuroanatomic variability in clinically acquired brain MRI scans with limited imaging pathology (SLIPs) and to evaluate if growth charts from curated clinical MRI scans differed from research-quality MRI scans or were influenced by clinical indication for the scan. Materials and Methods In this secondary analysis of preexisting data, clinical brain MRI SLIPs from an urban pediatric health care system (individuals aged ≤22 years) were scanned across nine 3.0-T MRI scanners. The curation process included manual review of signed radiology reports and automated and manual quality review of images without gross pathology. Global and regional volumetric imaging phenotypes were measured using two image segmentation pipelines, and clinical brain growth charts were quantitatively compared with charts derived from a large set of research controls in the same age range by means of Pearson correlation and age at peak volume. Results The curated clinical data set included 532 patients (277 male; median age, 10 years [IQR, 5-14 years]; age range, 28 days after birth to 22 years) scanned between 2005 and 2020. Clinical brain growth charts were highly correlated with growth charts derived from research data sets (22 studies, 8346 individuals [4947 male]; age range, 152 days after birth to 22 years) in terms of normative developmental trajectories predicted by the models (median r = 0.979). Conclusion The clinical indication of the scans did not significantly bias the output of clinical brain charts. Brain growth charts derived from clinical controls with limited imaging pathology were highly correlated with brain charts from research controls, suggesting the potential of curated clinical MRI scans to supplement research data sets. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Ertl-Wagner and Pai in this issue.


Assuntos
Encéfalo , Gráficos de Crescimento , Humanos , Masculino , Criança , Recém-Nascido , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Cabeça
12.
bioRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873315

RESUMO

Both psychiatric vulnerability and cortical structure are shaped by the cumulative effect of common genetic variants across the genome. However, the shared genetic underpinnings between psychiatric disorders and brain structural phenotypes, such as thickness and surface area of the cerebral cortex, remains elusive. In this study, we employed pleiotropy-informed conjunctional false discovery rate analysis to investigate shared loci across genome-wide association scans of regional cortical thickness, surface area, and seven psychiatric disorders in approximately 700,000 individuals of European ancestry. Aggregating regional measures, we identified 50 genetic loci shared between psychiatric disorders and surface area, as well as 26 genetic loci shared with cortical thickness. Risk alleles exhibited bidirectional effects on both cortical thickness and surface area, such that some risk alleles for each disorder increased regional brain size while other risk alleles decreased regional brain size. Due to bidirectional effects, in many cases we observed extensive pleiotropy between an imaging phenotype and a psychiatric disorder even in the absence of a significant genetic correlation between them. The impact of genetic risk for psychiatric disorders on regional brain structure did exhibit a consistent pattern across highly comorbid psychiatric disorders, with 80% of the genetic loci shared across multiple disorders displaying consistent directions of effect. Cortical patterning of genetic overlap revealed a hierarchical genetic architecture, with the association cortex and sensorimotor cortex representing two extremes of shared genetic influence on psychiatric disorders and brain structural variation. Integrating multi-scale functional annotations and transcriptomic profiles, we observed that shared genetic loci were enriched in active genomic regions, converged on neurobiological and metabolic pathways, and showed differential expression in postmortem brain tissue from individuals with psychiatric disorders. Cumulatively, these findings provide a significant advance in our understanding of the overlapping polygenic architecture between psychopathology and cortical brain structure.

13.
Nat Genet ; 55(9): 1483-1493, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592024

RESUMO

Our understanding of the genetics of the human cerebral cortex is limited both in terms of the diversity and the anatomical granularity of brain structural phenotypes. Here we conducted a genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance imaging-derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions in 36,663 individuals and identified 4,349 experiment-wide significant loci. These phenotypes include cortical thickness, surface area, gray matter volume, measures of folding, neurite density and water diffusion. We identified four genetic latent structures and causal relationships between surface area and some measures of cortical folding. These latent structures partly relate to different underlying gene expression trajectories during development and are enriched for different cell types. We also identified differential enrichment for neurodevelopmental and constrained genes and demonstrate that common genetic variants associated with cortical expansion are associated with cephalic disorders. Finally, we identified complex interphenotype and inter-regional genetic relationships among the 13 phenotypes, reflecting the developmental differences among them. Together, these analyses identify distinct genetic organizational principles of the cortex and their correlates with neurodevelopment.


Assuntos
Córtex Cerebral , Estudo de Associação Genômica Ampla , Humanos , Córtex Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Neuroimagem , Fenótipo
14.
Nat Neurosci ; 26(8): 1461-1471, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460809

RESUMO

Structural similarity is a growing focus for magnetic resonance imaging (MRI) of connectomes. Here we propose Morphometric INverse Divergence (MIND), a new method to estimate within-subject similarity between cortical areas based on the divergence between their multivariate distributions of multiple MRI features. Compared to the prior approach of morphometric similarity networks (MSNs) on n > 11,000 scans spanning three human datasets and one macaque dataset, MIND networks were more reliable, more consistent with cortical cytoarchitectonics and symmetry and more correlated with tract-tracing measures of axonal connectivity. MIND networks derived from human T1-weighted MRI were more sensitive to age-related changes than MSNs or networks derived by tractography of diffusion-weighted MRI. Gene co-expression between cortical areas was more strongly coupled to MIND networks than to MSNs or tractography. MIND network phenotypes were also more heritable, especially edges between structurally differentiated areas. MIND network analysis provides a biologically validated lens for cortical connectomics using readily available MRI data.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Animais , Humanos , Encéfalo , Imagem de Difusão por Ressonância Magnética , Conectoma/métodos , Macaca
15.
Proc Natl Acad Sci U S A ; 120(20): e2216798120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155868

RESUMO

Brain scans acquired across large, age-diverse cohorts have facilitated recent progress in establishing normative brain aging charts. Here, we ask the critical question of whether cross-sectional estimates of age-related brain trajectories resemble those directly measured from longitudinal data. We show that age-related brain changes inferred from cross-sectionally mapped brain charts can substantially underestimate actual changes measured longitudinally. We further find that brain aging trajectories vary markedly between individuals and are difficult to predict with population-level age trends estimated cross-sectionally. Prediction errors relate modestly to neuroimaging confounds and lifestyle factors. Our findings provide explicit evidence for the importance of longitudinal measurements in ascertaining brain development and aging trajectories.


Assuntos
Envelhecimento , Encéfalo , Humanos , Estudos Transversais , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Neuroimagem , Imageamento por Ressonância Magnética
16.
Neuroimage ; 274: 120125, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084926

RESUMO

Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called batch effects, is present in this data; direct application of downstream analyses to the data may lead to biased results. Image harmonization methods seek to remove these batch effects and enable increased generalizability and reproducibility of downstream results. In this review, we describe and categorize current approaches in statistical and deep learning harmonization methods. We also describe current evaluation metrics used to assess harmonization methods and provide a standardized framework to evaluate newly-proposed methods for effective harmonization and preservation of biological information. Finally, we provide recommendations to end-users to advocate for more effective use of current methods and to methodologists to direct future efforts and accelerate development of the field.


Assuntos
Aprendizado Profundo , Humanos , Reprodutibilidade dos Testes , Benchmarking , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
17.
Nat Neurosci ; 26(4): 638-649, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973514

RESUMO

Animal studies of neurodevelopment have shown that recordings of intrinsic cortical activity evolve from synchronized and high amplitude to sparse and low amplitude as plasticity declines and the cortex matures. Leveraging resting-state functional MRI (fMRI) data from 1,033 youths (ages 8-23 years), we find that this stereotyped refinement of intrinsic activity occurs during human development and provides evidence for a cortical gradient of neurodevelopmental change. Declines in the amplitude of intrinsic fMRI activity were initiated heterochronously across regions and were coupled to the maturation of intracortical myelin, a developmental plasticity regulator. Spatiotemporal variability in regional developmental trajectories was organized along a hierarchical, sensorimotor-association cortical axis from ages 8 to 18. The sensorimotor-association axis furthermore captured variation in associations between youths' neighborhood environments and intrinsic fMRI activity; associations suggest that the effects of environmental disadvantage on the maturing brain diverge most across this axis during midadolescence. These results uncover a hierarchical neurodevelopmental axis and offer insight into the progression of cortical plasticity in humans.


Assuntos
Córtex Sensório-Motor , Animais , Humanos , Adolescente , Criança , Adulto Jovem , Adulto , Imageamento por Ressonância Magnética/métodos , Encéfalo , Mapeamento Encefálico/métodos , Bainha de Mielina
18.
Biol Psychiatry ; 94(7): 591-600, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764568

RESUMO

BACKGROUND: Our understanding of the impact of copy number variants (CNVs) on psychopathology and their joint influence with polygenic risk scores (PRSs) remains limited. METHODS: The UK Biobank recruited 502,534 individuals ages 37 to 73 years living in the United Kingdom between 2006 and 2010. After quality control, genotype data from 459,855 individuals were available for CNV calling. A total of 61 commonly studied recurrent neuropsychiatric CNVs were selected for analyses and examined individually and in aggregate (any CNV, deletion, or duplication). CNV risk scores were used to quantify intolerance of CNVs to haploinsufficiency. Major depressive disorder and generalized anxiety disorder PRSs were generated for White British individuals (N = 408,870). Mood/anxiety factor scores were generated using item-level questionnaire data (N = 501,289). RESULTS: CNV carriers showed higher mood/anxiety scores than noncarriers, with the largest effects seen for intolerant deletions. A total of 11 individual deletions and 8 duplications were associated with higher mood/anxiety. Carriers of the 9p24.3 (DMRT1) duplication showed lower mood/anxiety. Associations remained significant for most CNVs when excluding individuals with psychiatric diagnoses. Nominally significant CNV × PRS interactions provided preliminary evidence that associations between select individual CNVs, but not CNVs in aggregate, and mood/anxiety may be modulated by PRSs. CONCLUSIONS: CNVs associated with risk for psychiatric disorders showed small to large effects on dimensional mood/anxiety scores in a general population cohort, even when excluding individuals with psychiatric diagnoses. CNV × PRS interactions showed that associations between select CNVs and mood/anxiety may be modulated by PRSs.


Assuntos
Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Variações do Número de Cópias de DNA/genética , Bancos de Espécimes Biológicos , Transtornos Mentais/genética , Reino Unido , Fatores de Risco
19.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798354

RESUMO

The white matter architecture of the human brain undergoes substantial development throughout childhood and adolescence, allowing for more efficient signaling between brain regions that support executive function. Increasingly, the field understands grey matter development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. While white matter development also appears asynchronous, previous studies have largely relied on anatomical atlases to characterize white matter tracts, precluding a direct assessment of how white matter structure is spatially and temporally coordinated. Here, we leveraged advances in diffusion modeling and unsupervised machine learning to delineate white matter fiber covariance networks comprised of structurally similar areas of white matter in a cross-sectional sample of 939 youth aged 8-22 years. We then evaluated associations between fiber covariance network structural properties with both age and executive function using generalized additive models. The identified fiber covariance networks aligned with the known architecture of white matter while simultaneously capturing novel spatial patterns of coordinated maturation. Fiber covariance networks showed heterochronous increases in fiber density and cross section that generally followed hierarchically organized temporal patterns of cortical development, with the greatest increases in unimodal sensorimotor networks and the most prolonged increases in superior and anterior transmodal networks. Notably, we found that executive function was associated with structural features of limbic and association networks. Taken together, this study delineates data-driven patterns of white matter network development that support cognition and align with major axes of brain maturation.

20.
Mol Psychiatry ; 28(3): 1137-1145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36575305

RESUMO

Understanding how traumatic stress affects typical brain development during adolescence is critical to elucidate underlying mechanisms related to both maladaptive functioning and resilience after traumatic exposures. The current study aimed to map deviations from normative ranges of brain gray matter for youths with traumatic exposures. For each cortical and subcortical gray matter region, normative percentiles of variations were established using structural MRI from typically developing youths without any traumatic exposure (n = 245; age range = 8-23) from the Philadelphia Neurodevelopmental Cohort (PNC). The remaining PNC participants with neuroimaging data (n = 1129) were classified as either within the normative range (5-95%), delayed (>95%) or accelerated (<5%) maturational ranges for each region using the normative model. An averaged quantile regression index was calculated across all regions. Mediation models revealed that high traumatic stress load was positively associated with poorer cognitive functioning and greater psychopathology, and these associations were mediated by accelerated gray matter maturation. Furthermore, higher stressor reactivity scores, which represent a less resilient response under traumatic stress, were positively correlated with greater acceleration of gray matter maturation (r = 0.224, 95% CI = [0.17, 0.28], p < 0.001), suggesting that more accelerated maturation was linked to greater stressor response regardless of traumatic stress load. We conclude that traumatic stress is a source of deviation from normative brain development associated with poorer cognitive functioning and more psychopathology in the long run.


Assuntos
Cognição , Substância Cinzenta , Humanos , Adolescente , Criança , Adulto Jovem , Adulto , Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Psicopatologia , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA